
2018 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM 
SYSTEMS ENGINEERING (SE) TECHNICAL SESSION

AUGUST 7-9, 2018 – NOVI, MICHIGAN

The NeMO Orbiter:  A Demonstration Hypermodel
Michael J. Vinarcik, P.E., FESD 

University of Detroit Mercy 
Booz Allen Hamilton 

Detroit, MI 

Michael J. Vinarcik, P.E., FESD 
University of Detroit Mercy 

Booz Allen Hamilton 
Detroit, MI 

Peter Hodges 
Fiat Chrysler Automobiles

Auburn Hills, MI 

Lizardo Amador Marin 
Kyle Ebner 

Gary Kliczinski 
Natalya Matevossyan 
Ford Motor Company 

Dearborn, MI

Jesus Mata Castaneda 
General Motors Corporation 

Milford, MI 

ABSTRACT 
System modeling is continuing to grow in importance as the enabling 

discipline for digital engineering.  Descriptive system models can be used as the 
“central nervous system” of a system development effort (to federate a 
constellation of analytical models and other engineering content).   

Hypermodeling is a methodology focused on maximizing model elegance 
through the efficient generation of a descriptive system model (with appropriate 
supporting content).  It emphasizes the most simple, direct approach to rigorously 
capturing relevant information.  Hypermodels use a limited set of model elements, 
relationships, and properties and seek to maximize the amount of information 
derived from the model.   

The NeMO hypermodel, an example built by students at the University of 
Detroit Mercy, provides a comprehensive demonstration of this approach and 
includes behavioral, structural, and analytic information as well as metrics and 
requirements.   

It is hoped that this large example will serve as a focus for discussion and 
experimentation in the system modeling community.  Links to hypermodeling 
tutorial videos are available for study and comment at the hypermodeling website:  
http://hypermodeling.systems. 



Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

The NeMO Orbiter:  A Demonstration Hypermodel 

Page 2 of 19 

INTRODUCTION 

Hypermodeling was born of necessity, there were 
several systems modeling needs emerging at the 
beginning of 2018 that this effort was intended to 
address:  
 There was a need to unify a variety of 

modeling techniques that the author had 
developed in the past several years and 
demonstrate their utility and coherence in a 
larger effort.  

 The system modeling community needed a 
publicly available reference model, drawn 
from unclassified and non-proprietary 
sources, that could be used as a testbed for 
new modeling techniques, analyses, and 
development.  

 A large model was needed for further 
development of adjacent and ancillary 
analysis techniques such as design structure 
matrices, Salado’s tension matrices [1], 
network graph visualizations, and other 
potentially useful emerging practices. 

 Finally, there was a need to challenge the 
status quo in modeling and demonstrate that 
there was a way to model systems effectively 
using relatively few relationships and element 
types while still maintaining a coherent and 
rigorous model narrative of the system of 
interest. 

HYPERMODELING 

The Elegance Equation 

Every modeling effort has several factors that 
may be used to describe it:  

 = Efficiency factor = output/input (0 <  < 1)  
 = Effectiveness factor = ability to accomplish 

intended outcome (0 <  < 1)  
 = Elegance value (0 <  < 1)  

 = 
Language, tool, and method each have their own 

contributions to this equation:  
language language tool tool method method = 

Once the tool and language are selected, those 
terms are effectively constants…so any modeler is 
only able to directly influence method method.   

Therefore, productivity, effectiveness, and 
elegance depend heavily upon the methods used to 
construct the descriptive system model.  One 
critical, inescapable fact is that every model 
element has a cost associated with its elicitation, 
creation, definition, and maintenance.  Therefore, if 
a system can be described rigorously and 
completely with n elements, each n + i, where i > 0, 
element adds no value and only increases cost. 

Agile proponents have described software 
development in two ways: 

WET = Write Everything Twice 
DRY = Don’t Repeat Yourself 
A corollary of these principles is directly 

applicable to system modeling:  Don’t Create What 
You Can Infer or Query.  As long as these 
inferences and queries are unambiguous, 
leveraging them has a significant and direct impact 
on reducing the number of modeling elements. 

Controversial Aspects of Hypermodeling 

There are several controversial aspects of 
hypermodeling that challenge assumptions in 
traditional systems engineering and modeling 
approaches (See Figure 1).  First, requirements are 
subordinated and are considered “just another 
model element.”  Source requirements, capability 
documents, or other upfront goals provided by 
stakeholders, management, or regulatory bodies 
should be respected and are collected at the 
beginning of the model development process or if 
they are imposed later.  However, the authoring of 
individual system, subsystem, and component 
requirements is deferred until very late in the 
hypermodeling process.  This is intended to free up 
resources because, in the author's experience, 
significant effort is spent trying to synchronize text-
based requirements with system models that are 
still in flux.    

Modeling of the complex systems that 
characterize the modern age is an exercise that is 



Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

The NeMO Orbiter:  A Demonstration Hypermodel 

Page 3 of 19 

both iterative and collective.  Behavior, structure, 
interfaces, flows, properties, and relationships 
typically evolve rapidly over the course of the 
modeling effort; their dynamic nature and the 
constant emergence of new information makes 
attempts to keep textual requirements in sync with 
models difficult and time-consuming.  The effort 
this requires results in a drain on resources and saps 
modeling effort away from more fruitful discovery 
and analysis.   

Many programs attempt to conduct requirements 
development before the integrated system model is 
matured and this leads to an endless cycle of 
requirements updates.  To make matters worse, 
requirements typically are placed under change 
control and this necessitates involving 
administrative, engineering, and management 
personnel in the review and approval of every 
proposed change.  This usually entails pre-work 
and attendance at change control meetings. 

For that reason, requirements authoring is 
purposely deferred until the entire model (or at least 
key sections of it) is stable enough to warrant 
requirement authoring.  At that point, it is a 
straight-forward matter to author requirements 
based on functions, messages and signals, interface 
information, and other relevant model content (See 
Requirements Churn: The Hidden Drain on 
Systems Engineering [2].) 

The second controversial aspect of hyper 
modeling is that very few relationships are used 
between requirements.  It should be noted that the 
SysML extended requirement types (functional, 
performance, design constraint, etc.) are strongly 
preferred because system modeling tools are 
capable of rigorously validating requirement 
relationships. For example, functional 
requirements must be <<satisfied>> by activities or 
operations, and interface requirements must be 
<<satisfied>> by flows, connectors, or ports.  For 
this reason, <<satisfy>> is the only relationship that 
is permitted between requirements and descriptive 
model elements in the construction of a 
hypermodel.  It forces a crispness in requirements 

because the element, behavior, or property that 
“makes them true” must be present in the model to 
serve as the other end of the connection.  The 
<<derive>> and <<refine>> relationships are 
permitted between requirements and between 
requirements and certain model elements (such as 
use cases).  These allow the maturation of the 
model to drive additional requirement content (for 
example, the creation of functional and 
performance requirement couplets connected by 
<<refine>> relationships).  <<trace>> relationships 
are used between requirements and any upstream 
content, artifacts, or standards.  Finally, the 
<<verify>> relationship is used between 
requirements and test activities, which are 
essentially activity diagrams that have a special 
property that returns a result of pass or fail. This 
ensures the clear identification of the step in the 
verification process that adjudicates the outcome 
and determines whether the requirement has been 
appropriately satisfied. 

Another controversial aspect of hyper modeling is 
the absence of swimlanes on activity diagrams. It is 
the primary author's opinion that swimlanes are a 
serious misrepresentation and misuse of a modeling 
tool.  They attempt to use spatial positioning on a 
diagram as a surrogate for properties of interest.  
That may have been of some utility with drawing 
tools but is completely inappropriate for modern 
modeling approaches.  Several individuals have 
challenged the author, claiming that “crossing the 
swimlane” is a useful way to identify needed 
interfaces.  The author’s approach, which 
rigorously associates each action node with a 
specific owning class or usage, enables simple, 
query-based identifications of functions that need 
interface assignments because they are owned by 
different model elements.  The hypermodeling 
approach also allows for the assignment of object 
flows between action nodes to specific connectors, 
sequence diagram messages, and state transitions.  
There is no need to rely on cosmetic approaches as 
a surrogate for rigor when rapid, tool-driven queries 
are possible. 



Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

The NeMO Orbiter:  A Demonstration Hypermodel 

Page 4 of 19 

Another commonly used practice prohibited in 
hypermodeling is the use of the <<allocate>> 
relationship.  It is the primary author's opinion that 
allocation is inherently sloppy; it is easy to allocate 
thousands of requirements to model elements with 
little rhyme or reason.  This forces the downstream 
consumer of the requirements (typically text 
statements) to construct lossy mental models of the 
system intent.  The use of the <<satisfy>> 
relationship, in contrast, forces a crispness in the 
construction of both the model and the related 
requirements.  It forces singularization and careful 
selection of each element, property, interface, or 
behavior that <<satisfies>> the requirement and 
“makes it true.”  This improves clarity and 
facilitates the identification of duplicates or 
conflicts because instead of sifting through 
thousands of requirements allocated to a system 
element, the relative handful that are <<satisfied>> 
by a given element or property are easy to compare 
in a check for errors and inconsistencies.  

Note that more than one element may <<satisfy>> 
a requirement if that is appropriate. 

Other Aspects of Hypermodeling 

Hypermodeling relies on the <<realization>> 
relationship to connect different layers of 
architectural abstraction.  If a purely functional 
layer is constructed it is <<realized>> by logical 
architecture elements and these are then 
<<realized>> by elements of the physical 
architecture.  This relationship construction also 
allows error checking and the tailoring of functions 
at each level.  For example, by having every 
physical element own its own copies of relevant 
functions, inputs and outputs can be adjusted, 
additional content may be added, and code snippets 
can be embedded.  These relationships improve the 
fidelity and rigor of the model significantly.  For 
example, a physical model element may 
<<realize>> a logical element that in turn 
<<realizes>> multiple functions…each of which is 
associated with functional hazards, regulatory 
requirements, or other relevant information.  Using 

structured queries, these relevant pieces of 
information may be collected and displayed at the 
physical level without the need for direct 
connection or duplication.  In addition, if any 
changes are made to these higher level analyses or 
artifacts the information presented to the team 
members at the physical level is immediately 
updated; this approach is inherently DRY. 

MagicDraw 

One of the primary author’s Ten Commandments 
of Modeling (see Figure 2) is that one should 
ruthlessly subordinate a modeling effort to what the 
chosen modeling tool does well.  MagicDrawTM, 
developed by No Magic, is arguably the most 
standards compliant SysML modeling tool 
available today.  It is also arguably one of the most 
user-friendly, due in large part to its user 
community’s feedback.  The primary author is a 
member of No Magic’s Client Advisory Board, a 
formal group representing some of the largest and 
most demanding user communities, but the 
company also considers a multitude of feature 
requests submitted by individuals worldwide.  As a 
result, each new release or service pack has a host 
of improvements that savvy modelers can exploit to 
increase their productivity. 

Because of these factors, the author believes that 
the tool tool for MagicDraw are relatively close to 
1, but only if modelers know how to effectively use 
it.  Structuring each model to make use of 
MagicDraw’s internal query language (known as 
Structured Expressions) or other languages (such as 
Beanshell and JavaScript) is how hypermodeling 
delivers on its goal of economizing modeling while 
maintaining rigor. 

QED 

In traditional geometric proofs, QED was the final 
line a student wrote to indicate he was finished.  
Quod erat demonstrandum means “that which was 
to be proven” in Latin.   



Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

The NeMO Orbiter:  A Demonstration Hypermodel 

Page 5 of 19 

This acronym has been adapted for 
hypermodeling: 

What is the Question we need to answer? 
How can we Extract relevant information from 

the model? 
How should we Display it to stakeholders in a 

meaningful, easy to consume way? 

By appropriately harnessing and answering these 
three questions, a competent system modeler is able 
to provide value for his program by allowing the 
program team’s engineering staff to have insight 
into the system of interest. 

As Frederick Brooks wrote: 
“Show me your flowcharts and conceal your 

tables, and I shall continue to be mystified. Show 
me your tables, and I won’t usually need your 
flowcharts; they’ll be obvious.[3]”   

Tables (or matrices or relationships maps) are 
often much more useful and clear than diagrams.  
For this reason, competent modelers should 
carefully select how information should be 
presented (remembering that the model and its 
content is independent of its display).  Subject 
matter experts, modelers, decision makers, and 
stakeholders may have different cognitive styles 
and preferences.  Modelers must be willing to adapt 
without compromising model integrity.  There is a 
fine line between fruitful challenge of the status 
quo (such as abolishing swimlanes) and fruitless 
conflict. 

Observing QED principles requires that the 
modeler(s) find a way to represent all relevant 
information in a well-defined structure so that it can 
be found and serve as the authoritative source of 
technical truth; for each piece of useful 
information: 

Should it be owned by an element? 
Should it be owned by a relationship? 
Should it be owned by a usage? 

BUILDING BLOCKS OF A HYPERMODEL 

Operations 

Operations are the most important behavioral 
element in hypermodeling: 

 They own parameters (allowing rigorous 
definition of inputs/outputs). 

 They can be further decomposed with 
methods. 

 They must be owned by blocks or activities. 
 They may <<satisfy>> functional 

requirements. 
 Their use streamlines behavioral 

decomposition and because they have clear 
ownership many complex queries are 
simplified. 

Opaque Behaviors 

Opaque behaviors (a model element type) 
encapsulate structured expressions, metachains, 
scripts, queries, and other tool-specific behaviors. 

They may be used to drive tables, matrices, 
derived properties, and metrics.  A library of useful 
opaque behaviors may be created by expert 
modelers and shared throughout an organization.  
In many ways, opaque behaviors enable DRY 
development of the system model by facilitating 
reuse and enabling maintenance of a smaller set of 
custom queries. 

Opaque behaviors may also be used to facilitate 
analysis; in the case of this case study, an opaque 
behavior was used to facilitate scenario-based 
power consumption analysis. 

Item Flows 

Item flows are one of the most important elements 
used in hypermodeling.  They may be used to fully 
integrate behavior, structure, and flows.  A given 
item flow connects specific parts or ports (at the 
usage level) and may be mapped to connectors
(internal block diagrams), object flows (activity 
diagrams), messages (sequence diagrams), and 
transitions (state machines).  Derived properties 
using item flows allow extended information to be 
displayed on any diagram in this chain of 



Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

The NeMO Orbiter:  A Demonstration Hypermodel 

Page 6 of 19 

connection (for example, mapping a functional 
output to a transition on a state machine). 

This represents the most efficient way the author 
has yet discovered to fully describe the 
relationships between these diagrams with a 
minimum number of elements and relationships. 

THE BIRTH OF THE NEMO HYPERMODEL 

A unique opportunity presented itself in the fall of 
2017:  a number of students who previously had 
studied systems architecture and systems 
engineering as students in the University of Detroit 
Mercy's Master of Science in Product Development 
(MPD) program wished to complete incremental 
requirements and obtain systems engineering 
certificates from the University.  They were 
required to take additional classes and elected to 
enroll in the newly-created dedicated systems 
modeling with SysML class.  (SysML, the System 
Modeling Language, is the industry standard, 
general purpose modeling language.  It is 
administered by the Object Management Group).  
Because they had previous experience with SysML 
modeling integrated into the MPD curriculum, the 
author felt they would benefit from an extended 
modeling project and gave them the option of 
developing a reference model. 

Once they had agreed to participate in this effort, 
a suitable subject for the model needed to be 
selected.  Past modeling projects in the MPD 
program included notional space probes (with 
missions and capabilities specified by the primary 
author), a notional polar exploration submarine, 
personal survival pods (intended to sustain disaster 
survivors or explorers in remote areas for a period 
of time without resupply or other resources), and a 
Next generation Mars Orbiter (NeMO).  The author 
selected the NeMO for redevelopment (starting 
from published NASA goals, objectives, 
subobjectives, and investigations) because it was 
based on public information and non-automotive 
(the students all work in the automotive industry 
and this precluded the possibility of introducing 
any proprietary information).  It also had the 

advantage of being large enough to exercise the 
modeling approach and small enough to be 
manageable by the team. 

Modeling Process 

The NeMO hypermodel was constructed in one 
term by six students.  One class session each week 
was augmented with one or more feedback and help 
sessions to assist the students with advanced 
modeling techniques and the resolution of quality 
checks to improve model health. 

The modeling effort followed the hypermodeling 
loop displayed in Figure 3.  It should be noted that 
this cycle is highly iterative; as information or gaps 
are exposed in one area they may impact other 
areas.  The model’s package structure (see Figure 
4) allowed the students to work in a relatively linear 
fashion since each “lower” package tends to be less 
abstract and more concrete than the one above it. 

The instructor imported the NASA goals, 
objectives, sub-objectives, and investigations and 
their relationships (see Figure 5) and provided these 
to the students as a basis for their modeling.  
Behavior modeling was conducted using the 
relationships shown in Figure 6.  They identified 
capabilities and <<traced>> them to investigations 
(these served as the connection point to the 
upstream goals and objectives, see Figure 7); they 
created use case diagrams to analyze these 
capabilities (see Figure 9).  Each student also 
developed instrument architectures that 
implemented those capabilities and was assigned a 
subsystem that provided or enabled generic satellite 
behaviors and capabilities. 

Elements identified in the use case diagrams were 
used as the basis for the system context (see Figure 
8).  Students were given the option to create a 
functional architecture (using activities to own 
operations) or begin with a logical architecture 
(since this project already made numerous 
assumptions about which elements would perform 
various functions).  See Figure 10 for notional 
architectural elements and Figure 11 for a relation 
map that decomposes the logical architecture. 



Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

The NeMO Orbiter:  A Demonstration Hypermodel 

Page 7 of 19 

Interfaces were defined using Internal Block 
Diagrams (see Figure 12); these allowed the use of 
item flows to unify behavioral, structural, and flow 
elements.  State machines were created (and owned 
by specific system elements) to integrate desired 
system behaviors (see Figure 13 and Figure 14); 
note that entry/exit points are extremely useful 
SysML elements that facilitate the use of 
submachines. 

The use of generalizations between use cases (see 
Figure 15) allows the cloning of associated 
behaviors and rapid tailoring at each level of 
abstraction (or to create a variant). 

The final graphical example provided illustrates 
the relationships between requirements and test 
activities (see Figure 16). 

Detailed parametric diagrams were not 
constructed; however, a scenario-based power 
consumption analysis was developed.  Customized 
power usage relationships were created between 
part properties and the power scenarios in which 
they consumed power.  A scale factor (defaulting to 
1) was defined to allow lower-power usage of a 
given part.  An opaque behavior was defined that 
rolled up all power usage for a given scenario 
(power consumption for a part property was 
provide by the defining block, multiplied by the 
multiplicity and scale factor, and then summed for 
the power scenario).  Although not as rigorous as a 
state-machine and parametric diagram-based 
analysis, this approach demonstrated that a rapidly 
constructed, less rigorous approach still had 
significant qualitative value.

Quality Checks 

Numerous quality check tables were created to 
enable the rapid detections of errors in the model.  
For example, one table displays “trapped 
parameters.”  These are parameters owned by 
operations that cannot legally flow over the 
available interfaces owned by the block.  These 
may be resolved by adding interfaces or 
generalization relationships to enable the “trapped” 
signals to flow over existing interfaces. 

Other tables displayed elements without 
documentation or required <<trace>> 
relationships.  The creation of the custom queries 
that drive these tables requires some advanced 
skills but when they are placed in a library as 
opaque behaviors every model that uses the library 
may benefit from them. 

IMPACT 

The NeMO hypermodel and related tutorial 
videos were released at the No Magic World 
Symposium in May 2018.  As of June 2018, the 
model is already in use by one Ph.D. student who is 
analyzing it as part of his thesis and it is serving as 
the basis for improving interoperability between 
MagicDraw and another analysis tool. 

Several debates (primarily in LinkedIn’s MBSE 
group) have been sparked by the video series and 
model and the author has provided it to the teams 
developing proposals for SysML 2.0.  Ongoing 
discussions with various modelers and corporations 
are underway. 

CONCLUSION 

The NeMO hypermodel was born from a set of 
needs and the effort of a dedicated group of 
students.  It illustrates a number of advanced 
modeling techniques and a unified approach 
intended to maximize the value of an integrated 
system model. 

The following students built the NeMO 
hypermodel: 

• Lizardo Amador Marin 
• Kyle Ebner 
• Peter Hodges 
• Gary Kliczinski 
• Jesus Mata Castaneda 
• Natalya Matevossyan 

The primary author is deeply grateful for their 
willingness to tackle this challenge and share their 
work with the system modeling community as the 
basis for further development and refinement. 



Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

The NeMO Orbiter:  A Demonstration Hypermodel 

Page 8 of 19 

DISCLAIMER 

The model and paper were prepared by the 
authors in their personal capacities as instructor and 
students. The opinions expressed in this article are 
the authors’ own and do not reflect the views of 
their respective employers 

REFERENCES 

[1] The Tension Matrix and the Concept of 
Elemental Decomposition: Improving 
Identification of Conflicting Requirements, A. 
Salado and R. Nilchiani, in IEEE Systems 
Journal, vol. 11, no. 4, pp. 2128-2139, Dec. 
2017. 

[2] Requirements Churn: The Hidden Drain on 
Systems Engineering, Systems Architecture 
Guild YouTube channel, published 10/8/2016. 
https://www.youtube.com/watch?reload=9&v=
T84WZ4WLqw8. 

[3] The Mythical Man-Month: Essays on Software 
Engineering (1975, 1995) [Originally published 
in 1975; Brooks, Frederick, page numbers refer 
to the substantially expanded Anniversary 
Edition (2nd Edition), 1995, Addison-Wesley, 
ISBN 0-201-83595-9], Pp. 102–3. 



Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

The NeMO Orbiter:  A Demonstration Hypermodel 

Page 9 of 19 

APPENDIX A:  FIGURES 

Needs / 
Capabilities
•Outcomes

•Scenarios

•Constraints

•Associated Elements

Context
• Block Definition 

Diagrams

• Internal Block 
Diagrams

• Interfaces

Behavior
• Use Case Diagrams

• Activity Diagrams

• State Machines

• Sequence Diagrams 
(if needed)

Structure / 
Interfaces / 
Flows
•Block Definition 
Diagrams

•Internal Block Diagrams

•Functional / Logical / 
Physical Architectures

Analysis

• Parametric 
Diagrams

• Variants

Requirements

• Model elements

• Requirements 
Matrices

• Requirements 
Tables

Figure 1: The Hypermodeling Approach 

The 10 Commandments of Modeling 

I. Thou shalt not make shelfware 

II. Thou shalt not add any model element without reason 

III. Thou shalt not add any model element that can be derived 

IV. Thou shalt document all model elements 

V. Thou shalt always apply units to value properties and tags 

VI. Thou shalt type all model elements 

VII. Thou shalt integrate the model and help it grow organically 

VIII. Thou shalt delete unneeded elements to prevent clutter 

IX. Thou shalt not be afraid to say “no” 

X. Thou shalt always do what is right for the model 

The Greatest Commandment: 

Thou shalt ruthlessly subordinate thy approach to what the modeling tool does easily and well.  
There is no point in trying to model and automate document-based processes with their inherent 
inefficiencies. 

Figure 2: The Ten Commandments of Modeling 



Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

The NeMO Orbiter:  A Demonstration Hypermodel 

Page 10 of 19 

Figure 3: The Hypermodeling Loop 

00 Source Content 
10 Behavioral Analysis 
20 Context 
30 Functional Architecture 
40 Logical Architecture 
50 Physical Architecture 
60 Verification 
70 Analysis 
80 Requirements 
90 Tables and Matrices 
QC Quality Checks 
Library 
• Ontology 

Figure 4: Hypermodel Package Structure 

Needs

Capabilities

Context

Constraints

BehaviorStructure

Interfaces

Flows

Analysis



Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

The NeMO Orbiter:  A Demonstration Hypermodel 

Page 11 of 19 

Figure 5: Source Content Relationships 

Figure 6:  Behavioral Analysis Relationships 



Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

The NeMO Orbiter:  A Demonstration Hypermodel 

Page 12 of 19 

Figure 7: Goal, Investigation, and Capability Matrix 

Figure 8: System Context Relationships 



Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

The NeMO Orbiter:  A Demonstration Hypermodel 

Page 13 of 19 

Figure 9:  Capability Use Case Diagram 

Figure 10: Notional Architectural Elements 



Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

The NeMO Orbiter:  A Demonstration Hypermodel 

Page 14 of 19 

Figure 11: Relation Map of NeMO Logical Architectural 



Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

The NeMO Orbiter:  A Demonstration Hypermodel 

Page 15 of 19 

Figure 12: Example Internal Block Diagram 

Figure 13:  State Machine Showing Entry/Exit Points 



Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

The NeMO Orbiter:  A Demonstration Hypermodel 

Page 16 of 19 

Figure 14:  Space Flight Computer State Machine 

Figure 15: Use Case Diagram showing Generalization to Facilitate Behavior Cloning 



Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

The NeMO Orbiter:  A Demonstration Hypermodel 

Page 17 of 19 

Figure 16: Validation Relationships 



Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

The NeMO Orbiter:  A Demonstration Hypermodel 

Page 18 of 19 

APPENDIX B:  HYPERMODELING STYLE GUIDE 

Use Cases: 
 Behavioral sketchpad to show behaviors/capabilities.   

 <<capability>> stereotype applied to capabilities 

 <<extend>> use cases are triggered by extension points 

 <<include>> use cases are always executed by the use case to which they are connected 

 May be more fully described by activity diagrams 

 <<dissociation>> relationships used to exclude inherited relationships. 

 Specialized by other use cases realized by variants (provides a basis for variant-specific 
activity diagrams) 

Activity Diagrams: 
 Flowcharts of behavior; describe activities that are made up of actions

 Call behavior actions execute other activities (activity diagrams) 

 Call operation actions execute “leaf node” functions owned by functional (activities), logical 
(blocks), or physical (blocks) elements (the smallest behaviors we will model) 

 Send and accept event actions model messages flowing into/out of activities and may be 
assigned to ports

 Complicated logical behaviors may be modeled (decision nodes, forking, etc.) 

Capabilities: 
 Use cases stereotyped as capabilities own activities that own operations

 They are only used as containers for operations

 They should be organized so that the majority of operations within a given activity are 
realized by a logical block (for example, a collection of testing/status/heartbeat functions that 
always are performed by a subsystem) 

 These may be omitted if it is more appropriate to begin modeling at the logical level 

Operations: 
 Model elements that MUST be owned by a block or activity

 May own in, out, or result parameters 

 Parameters may be typed by signals

 Parameters may have multiplicities 

Signals: 
 Are used to type parameters, information flows, item flows, flow properties, and send or

accept events 

 Can own attributes that include other signals 

Logical Blocks 
 Own part properties typed by blocks

 Own operations that realize operations owned by functional blocks 

 Are connected to other logical blocks by connectors (ports may also be used, if appropriate) 

 May own value properties typed by value types (which are typed by units) 



Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

The NeMO Orbiter:  A Demonstration Hypermodel 

Page 19 of 19 

Physical Blocks 
 Own part properties typed by blocks

 Own operations that realize operations owned by logical blocks 

 Own proxy ports typed by interface blocks

 Are connected to other physical blocks by connectors 

 May own value properties typed by value types (which are typed by units) 

Interface Blocks: 
 Own flow properties typed by signals

 May own ports typed by other interface blocks 

 May own signals and interface blocks (if appropriate) 

State Machines 
 All transitions are defined by signals, change events, time events, or operations

 All states have entry/do/exit behaviors defined 

 Most do behaviors will call activities owned by use cases 

End state: 
 All use cases are decomposed by activity diagrams 

 All activity diagram nodes are either call behavior nodes that trigger other activities or are 
call operation nodes triggering leaf-node operations on activities, or logical/physical blocks 

 Functional requirements are either <<satisfied>> by operations or by activities

 All leaf-node functions are operations on with in, out and result parameters typed by signals. 

 Ports have been added to the logical blocks (if appropriate) and are typed by interface blocks 

 Internal block diagrams have been created to show how logical blocks connect; all 
connectors have item flows showing what signals flow along them. 

 Item flows are used because of their ability to connect deeply nested ports and relate object 
flows, conveyed information, and messages 

 All object flows, messages, and signal event transitions are mapped to item flows. 

 <<physical>> blocks realize logical blocks and are used to redefine part properties of each 
physical architectural variant. 

 All quality checks pass (no untyped elements, documentation fields complete, no 
unconnected pins, etc.) 

Requirements: 
 All functional requirements are satisfied by operations or activities

 All interface requirements are satisfied by ports, flows, or connectors

 All physical and performance requirements are satisfied by value properties

 All design constraints are satisfied by blocks

 All requirements are verified by test cases


